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Abstract
We propose a new kind of supersymmetric (SUSY) transformation in the
case of the two-channel scattering problem with equal thresholds for partial
waves of the same parity. This two-fold transformation is based on two
imaginary factorization energies with opposite signs and with mutually
conjugated factorization solutions. We call it an eigenphase preserving SUSY
transformation as it relates two Hamiltonians, the scattering matrices of which
have identical eigenphase shifts. In contrast to known phase-equivalent
transformations, the mixing parameter is modified by the eigenphase preserving
transformation.

PACS numbers: 03.65.Nk, 24.10.Eq

1. Introduction

The present work is a continuation of our previous investigations on supersymmetric (SUSY)
transformations applied to coupled-channel problems with equal thresholds [1]. Our main
aim here is to present a method based on SUSY transformations, which allows us to construct
potentials with given scattering properties, i.e. to solve an inverse scattering coupled-channel
problem.

There are several approaches to this problem based on the Gelfand–Levitan–Marchenko
methods [2, 3]. In particular, Newton, Jost and Fulton [4–6] generalized the Gelfand–Levitan
method and solved the corresponding integral equations in the case of two channels and
rational scattering (S) matrices. Exactly solvable coupled-channel potentials obtained by this
technique may be used for describing the neutron–proton scattering. In particular, in this
way, Newton and Fulton [6] constructed a three-parameter phenomenological neutron–proton
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potential fitting low-energy scattering data. It would be interesting to extend this result by
enlarging the number of parameters to fit scattering data on a wider energy range; however,
the method based on integral transformations is rather involved and therefore quite difficult to
generalize. Using the Marchenko equation, the results of Newton and Fulton were nevertheless
reproduced and improved by von Geramb et al [7]. A review of the inverse scattering methods
may be found in [8–11].

Our hope that the SUSY technique may be efficient for the multichannel Schrödinger
equation is based on the well known equivalence between SUSY transformations and
the integral transformations of the inverse scattering method for single-channel problems
[12–15]. Due to this equivalence, one can use chains of first-order SUSY operators (also
referred to as first-order Darboux differential operators [16]) for constructing a Hamiltonian
with given scattering properties [17, 18]. This approach to the scattering inversion is more
efficient [15] just because of the differential character of the transformation. There are several
papers devoted to supersymmetric transformations for multichannel problems [19–26] (see
also [27–30] for additional motivations and physical applications). Arbitrary chains of first-
order SUSY transformations in the case of a matrix Schrödinger equation are studied in [31].
There, a matrix generalization of the well-known Crum–Krein formula is obtained. Another
important ingredient of the supersymmetric inversion technique are the phase-equivalent SUSY
transformations, which are based on two-fold, or second-order, differential operators. These
are described in [32–34] for the single-channel case and in [24, 25] for the coupled-channel
case. Such transformations keep the scattering matrix unchanged and simultaneously allow
us to reproduce given bound state properties.

It should be noted that methods based on a direct generalization of the SUSY technique to
the multichannel case are not able to provide an easy control of the scattering properties for all
channels simultaneously. For instance, in the two-channel case, the S-matrix is parametrized
by the eigenphase shifts δ1(k), δ2(k) and the mixing parameter ε(k), where k is the wave
number. Usual SUSY transformations modify these three quantities in a complicated way,
which makes their individual control difficult. We believe that this is the reason why SUSY
transformations did not find a wide application to multichannel scattering inversion.

In the present paper, we propose a two-fold SUSY transformation which allows us to
modify ε(k) only, while keeping δ1(k) and δ2(k) unchanged. We call such a transformation
eigenphase preserving. It is necessary to stress the difference between this new kind of
transformation and the well-known phase-equivalent transformations mentioned above. A
phase-equivalent transformation does not modify the scattering matrix at all, whereas the
eigenphase preserving transformation modifies the mixing between channels. An important
consequence of that is the possibility to use single channel SUSY transformations to fit
experimental values of the eigenphase shifts. Afterwards, the mixing parameter can be fitted
without further modification of the eigenphase shifts. Thus, the main advantage of our
approach consists in splitting the inversion problem into two independent parts: (i) fitting
eigenphase shifts to experimental values independently for each channel and (ii) fitting the
mixing parameter between these channels. To solve the first problem, one can use the single-
channel tools mentioned above. In the present work, we propose an elegant solution to the
second problem.

In what follows, we will use definitions and notations introduced in our previous paper
[1], where a first-order coupling SUSY transformation is analysed in details. Nevertheless,
in section 2, we recall some basic formulae necessary in the next sections. In section 3,
we describe the new two-fold SUSY transformation and prove our main result that this
transformation preserves the eigenphase shifts. A simple illustrative example of an exactly
solvable coupled-channel potential with a given scattering matrix is presented in section 4. In
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the conclusion, we discuss possible applications of the presented method and formulate some
possible lines of future investigation.

2. Two-channel scattering with equal thresholds

Consider the two-component radial Schrödinger equation [35, 36]

H0ψ0(k, r) = k2ψ0(k, r), r ∈ [0,∞) (1)

with the Hamiltonian

H0 = −1
d2

dr2
+ V int

0 (r) + l(l + 1)r−2, l = diag(l1, l2). (2)

Here 1 is the 2 × 2 identity matrix and the interaction potential V int
0 (r) is a real and symmetric

matrix, exponentially decreasing at large distances. We will consider the case of two partial
waves l1 and l2 with identical parity:

l2 = l1 + 2m, m ∈ Z. (3)

For the sake of convenience, we combine the interaction potential V int
0 (r) and the centrifugal

term into a single potential matrix V0(r) = V int
0 (r) + l(l + 1)r−2. To characterize this potential

near the origin, we use a singularity index matrix ν. The matrix ν is determined by the
asymptotic behaviour of the potential near the origin:

V0(r → 0) = ν(ν + 1)r−2 + O(1). (4)

Below, only potentials with singularity index being a diagonal matrix with integer entries
ν = diag(ν1, ν2) and νj � lj are considered. We will call such potentials physical and restrict
ourselves to SUSY transformations that produce physical potentials.

As usual, the Jost solutions f0(k, r) are defined as matrix solutions of (1) with exponential
asymptotic behaviour at large distances [35, 36]. In what follows, we will need a more detailed
asymptotic behaviour of these solutions; it is given by the asymptotic behaviour of the Bessel
functions of the third kind, H

(1)

l+ 1
2
(z), also called the first Hankel functions (see [37] for a

definition). At large distances, the Jost solution thus behaves like the corresponding solution
for the free particle

f0(k, r → ∞) → diag[hl1(kr), hl2(kr)], hl(z) = il+1
(πz

2

) 1
2
H

(1)

l+ 1
2
(z) (5)

with

hl(z → ∞) = eiz

(
1 +

i�

2z
+ o(z−1)

)
, � = l(l + 1). (6)

A special linear combination of the Jost solutions gives the regular solution

ϕ0(k, r) = i

2k
[f0(−k, r)F0(k) − f0(k, r)F0(−k)], (7)

ϕ0(k, r → 0) → diag

(
rν1+1

(2ν1 + 1)!!
,

rν2+1

(2ν2 + 1)!!

)
, (8)

where matrix F0(k) is the so-called Jost matrix.
To construct eigenphase preserving transformations, we need solutions of the Schrödinger

equation (1) with a special behaviour both at large distances and near the origin. Thus, we
first prove that the necessary solutions exist.
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Lemma 1. For any momentum k such that Im k > 0, det F0(k) �= 0, and for any constants
c1,2, d1,2 ∈ C, there exist two vector solutions �u(k, r) and �v(k, r) of the Schrödinger equation
(1) which behave at large distances as

�u(k, r → ∞) = e−ikr (c1, c2)
T (1 + o(1)), (9)

�v(k, r → ∞) = eikr (d1, d2)
T (1 + o(1)), (10)

and near the origin as

�u(k, r → 0) = (a1r
ν1+1, a2r

ν2+1)T (1 + o(r)), (11)

�v(k, r → 0) = (b1r
−ν1 , b2r

−ν2)T (1 + o(r)), (12)

where a1,2, b1,2 ∈ C.

Proof. To obtain the behaviour (10), �v(k, r) can be expressed in terms of the Jost solution

�v(k, r) = f0(k, r)(d1, d2)
T . (13)

Formula (12) follows from the behaviour of the Jost solution near the origin (see, e.g., [35]).
Taking into account that Im k > 0, one gets from (7)

ϕ0(k, r → ∞) → i

2k
f0(−k, r)F0(k). (14)

Here, we omit the second term in (7) since it becomes negligible at large distances with respect
to the first term. Thus, solution �u(k, r) may be obtained as

�u(k, r) = 2k

i
ϕ0(k, r)F−1

0 (k)(c1, c2)
T . (15)

Formula (11) follows from (8). �

The 2 × 2 scattering matrix S0(k) is expressed in terms of the Jost matrix as

S0(k) = eil π
2 F0(−k)F−1

0 (k)eil π
2 . (16)

Being unitary and symmetric, S0(k) can be diagonalized by an energy-dependent orthogonal
matrix R0(k):

RT
0 (k)S0(k)R0(k) = diag(e2iδ0;1(k), e2iδ0;2(k)), (17)

where δ0;j are the eigenphase shifts and the angle ε0 entering matrix R0 is called the mixing
angle

R0(k) =
(

cos ε0(k) − sin ε0(k)

sin ε0(k) cos ε0(k)

)
. (18)

Note that an opposite sign definition for the mixing angle could have been chosen; moreover,
the order of the eigenphase shifts is arbitrary: exchanging them while adding ±π/2 to the
mixing angle keeps the scattering matrix unchanged. In the next section, the eigenphase
preserving SUSY transformations are defined.
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3. Eigenphase preserving two-fold SUSY transformations

3.1. Two-fold SUSY transformations

Two-fold SUSY transformations led to a number of interesting quantum models with unusual
properties [38]. In particular, the corresponding superalgebra is nonlinear. It is natural to
consider the two-fold SUSY transformation of the Schrödinger equation (1) as a chain of
usual (i.e. one-fold) SUSY transformations. One-fold transformations for coupled-channel
Schrödinger equations were introduced in [19]. Their generalization, which allows us to
introduce a coupling between channels, was given in [1]. The additional requirement that
the transformed potential be physical was shown to result in a strong constraint on the
transformation parameters. The case of two transformations is less restrictive since the
intermediate Hamiltonian may be chosen unphysical. In particular, one may use as
transformation functions complex-valued solutions of the Schrödinger equation corresponding
to complex factorization constants. As we show below, a chain of two such transformations
may preserve the eigenphase shifts.

The chain of two SUSY transformations, H0 → H1 → H2, emerges from the following
intertwining relations:

L1H0 = H1L1, L2H1 = H2L2, (19)

where the operators Lj map solutions of the Schrödinger equations to each other as ψ1 = L1ψ0

and ψ2 = L2ψ1. These operators can be combined into an operator L defining the two-fold
SUSY transformation

LH0 = H2L, L = L2L1, (20)

directly mapping solutions of the initial Schrödinger equation to solutions of the transformed
Schrödinger equation as ψ2 = Lψ0.

The operators Lj are first-order differential operators:

L1 = w1(r) − ∂r , L2 = w̃2(r) − ∂r . (21)

We use the standard notation for the superpotentials

wj(r) = u′
j (r)u

−1
j (r), j = 1, 2, (22)

w̃2(r) = ũ′
2(r)ũ

−1
2 (r), (23)

which are expressed in terms of the matrix factorization solutions uj and ũ2 = L1u2. These
solutions satisfy the following Schrödinger equations:

H0uj = Ejuj , H1ũ2 = E2ũ2, (24)

with E1, E2 being factorization constants. The operator L then has a nontrivial kernel space,
Ker L, spanned by the set of transformation functions u1 and u2:

Ker L = span{u1, u2}. (25)

In the following, we will only consider self-conjugate factorization solutions, i.e. solutions
with a vanishing self-Wronskian W[u, u] = 0. The Wronskian of two matrix functions u, v is
defined as

W[u, v](r) ≡ uT (r)v′(r) − uT ′
(r)v(r), (26)

leading for factorization solutions to

W[u1, u2](r) = uT
1 (r)

[
w2(r) − wT

1 (r)
]
u2(r). (27)
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Hence, self-conjugate solutions correspond to symmetric superpotentials. The solution ũ2

then reads

ũ2(r) = L1u2(r) = [w1(r) − w2(r)]u2(r) = −[
uT

1 (r)
]−1

W[u1, u2](r), (28)

where the last expression has been obtained using (27) and the symmetry of w1. Using the
Schrödinger equation twice, one also sees that the derivative of Wronskian (27) reads

W[u1, u2]′(r) = (E1 − E2)u
T
1 (r)u2(r), (29)

a relation which will be used below.
The Hamiltonians in (19) correspond to potentials related to each other through

superpotentials

V1(r) = V0(r) − 2w′
1(r), V2(r) = V1(r) − 2w̃′

2(r). (30)

The sum of the two superpotentials w1 and w̃2 defines the two-fold superpotential W2, which
directly connects V0 to V2:

W2(r) ≡ w1(r) + w̃2(r), V2(r) = V0(r) − 2W ′
2(r). (31)

Using (23), (27) and (28), one can rewrite W2 in the compact forms

W2(r) = (E1 − E2)[w2(r) − w1(r)]
−1 (32)

= (E1 − E2)u2(r)W[u1, u2]−1(r)uT
1 (r). (33)

As will be seen below, the second expression is more general than the first one, as it may be
used in cases where the individual superpotentials w1 or w2 are singular.

Similarly, expressing the second derivative of the matrix solution ψ0(k, r) from (1) and
defining the logarithmic derivative

wk(r) = ψ ′
0(k, r)ψ−1

0 (k, r), (34)

one can rewrite the action of the second order transformation operator L on ψ0(k, r),

ψ2(k, r) = (w̃2 − ∂r)(w1 − ∂r)ψ0(k, r), (35)

in the following form:

ψ2(k, r) = [(−k2 + E1)1 + W2(r)(w1 − wk)]ψ0(k, r). (36)

A more symmetric form of this formula

ψ2(k, r) =
[(

−k2 +
E2 + E1

2

)
1 + W2(r)

(w1 + w2

2
− wk

)]
ψ0(k, r) (37)

may also be useful.

3.2. Main theorem

Let us now particularize the above results to two consecutive SUSY transformations with
mutually conjugated complex matrix factorization solutions corresponding to imaginary
factorization energies. We will prove that such a second-order transformation modifies the
mixing parameters without affecting the eigenphase shifts.

Theorem 1. Consider a complex matrix solution u of the coupled-channel Schrödinger
equations (1)–(4), with imaginary energy E1 = k2

1 ≡ 2iχ2 and complex wave number
k1 = χ(i + 1), χ > 0, behaving at large distances as

u(r → ∞) →
(

hl1(−k1r) ±ihl1(k1r)

∓ihl2(−k1r) hl2(k1r)

)
, (38)

6
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and near the origin as

u(r → 0) =
(

a1r
ν1+1 b1r

−ν1

a2r
ν2+1 b2r

−ν2

)
[1 + o(r)]. (39)

The two-fold SUSY transformation defined by (20)–(24) with matrix factorization solutions
u1 = u, u2 = u∗ corresponding to the imaginary factorization constants E1, E2 = E∗

1 =
−2iχ2 and complex wave numbers k1, k2 = χ(i − 1), possesses the following properties:

A. The resulting potential V2 defined in (31) is real, symmetric and regular ∀r . The two-fold
superpotential W2 reads

W2(r) = 4iχ2[w∗(r) − w(r)]−1, w(r) = u′(r)u−1(r), (40)

= 4iχ2u∗(r)W[u, u∗]−1(r)uT (r), (41)

where only the second expression can be used when the superpotential w is singular.
B. The long range behaviour of V2,

V2(r → ∞) = l̄(l̄ + 1)r−2 + o(r−2), l̄ = diag(l2, l1), (42)

corresponds to a re-ordering of partial waves with respect to channels.
C. The scattering matrix S2 of the transformed Schrödinger equation is expressed from the

initial scattering matrix S0 as follows:

S2(k) = O(k)S0(k)OT (k), (43)

where the real orthogonal matrix O reads

O(k) = eil̄ π
2

1√
k4 + 4χ4

(
−k2 ∓2χ2

±2χ2 −k2

)
e−il π

2 . (44)

D. The eigenphase shifts of the transformed scattering matrix S2 coincide with the initial
ones. With the permutation

δ2;1(k) = δ0;2(k), (45)

δ2;2(k) = δ0;1(k), (46)

the mixing parameter transforms as

ε2(k) = ε0(k) ± (−1)m arctan
k2

2χ2
. (47)

Proof. First, we note that lemma 1 implies that solution u exists. It reads

u(r) = 2k1

i
ϕ0(k1, r)F

−1
0 (k1)

(
1 0
∓i 0

)
+ f0(k1, r)

(
0 ±i
0 1

)
. (48)

Using (6) and (38), one may write the leading terms of the asymptotic behaviour of this
factorization solution as

u(r → ∞) →

⎛
⎜⎝ e−ik1r

(
1 − i�1

2k1r

)
±ieik1r

(
1 + i�1

2k1r

)
∓ie−ik1r

(
1 − i�2

2k1r

)
eik1r

(
1 + i�2

2k1r

)
⎞
⎟⎠ . (49)

7



J. Phys. A: Math. Theor. 43 (2010) 155201 A M Pupasov et al

A. According to the choice of transformation functions and factorization constants, the one-
fold superpotentials w1 and w2 are mutually complex conjugated, w1 = w, w2 = w∗.
Therefore, one can use w = u′u−1 and its complex conjugated form w∗ in (22), (23) and
(28), thus obtaining

w̃2(r) = w̃∗(r) = (ũ∗)′(ũ∗)−1, ũ∗(r) = L1u
∗(r) = (w − w∗)u∗. (50)

In this case, (40) and (41) directly follow from (32) and (33).
From (40), it is seen that W2, and thus the transformed potential (31), are real. The
symmetry of matrix V2 (i.e. V T

2 = V2) follows from the symmetry of superpotential w,
which can be established by considering the self-Wronskian W[u, u]. Since (29) implies
that this self-Wronskian is constant with respect to r and (49) implies that it vanishes at
large distances, W[u, u](∞) = 0, one has W[u, u](r) = 0,∀r . According to (27), this is
equivalent to the symmetry wT (r) = w(r),∀r .

Let us now prove that V2 is regular. According to (31) and (41), this is the case if and
only if the Wronskian W[u, u∗] is invertible ∀r . From (26) it follows that W[u, u∗] is an
anti-Hermitian matrix, i.e. W[u, u∗] = −W†[u, u∗]. Moreover, using (29), the derivative
of this Wronskian reads

W[u, u∗]′(r) = 4iχ2uT (r)u∗(r). (51)

Its diagonal entries can thus be integrated using (39) and (49), respectively. One finally
obtains

W[u, u∗](r)=
(

4iχ2
∫ r

0 (|u11(t)|2 + |u21(t)|2)dt W12[u, u∗](r)

−W∗
12[u, u∗](r) −4iχ2

∫ ∞
r

(|u12(t)|2 + |u22(t)|2)dt

)
,

(52)

where uij and Wij [u, u∗] label the entries of the factorization solution and those of the
Wronskian, respectively. This result implies that detW[u, u∗] > 0,∀r , which proves the
regularity of V2 stated in the theorem. Let us stress that this proof holds even in cases
where the superpotential w and the intermediate potential V1 are singular, which shows
that expression (41), though more complicated, is more general than (40).

B. Let us first consider the case l1 �= l2. From the asymptotic behaviour (49), it follows that
the determinant of the transformation solution u tends to zero as r → ∞ like the Laurent
series:

det u(r → ∞) = (�2 − �1)

χ(1 − i)r
+ o(r−2). (53)

Hence, the superpotential w behaves asymptotically as

w(r → ∞) = 4χ2r

�1 − �2

(
i ±1

±1 −i

)
+ O(1), (54)

from which, using (40), we find the asymptotic behaviour of W2,

W2(r → ∞) = �2 − �1

2r

(
1 0
0 −1

)
+ o(r−1). (55)

It should be emphasized that from (55) follows the exchange of the centrifugal terms in V2

with respect to V0 (see (31)). This effect of coupling SUSY transformations was previously
described in [1]. Note that the scattering properties of the transformed system crucially
depend on the exchange of centrifugal terms because of the presence of l-dependent
factors in the S-matrix definition (16).

8
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In the case of coinciding partial waves, l1 = l2, (55) is still valid but cannot
be established through (54): instead, W2(r) can be calculated from the Wronskian
representation (41) (see the appendix). The fact that the two-fold superpotential vanishes
at large distances faster than r−1 implies that the centrifugal tails are not affected by the
SUSY transformations.

C. To establish the modification of the scattering matrix, we have to look at the way the Jost
solutions and the regular solutions transform in the two-fold transformation.
Once again, let us start with the simpler case l1 �= l2. Without loss of generality we may
apply the general transformation of solutions (37) to the Jost solution, which now takes
the form

Lf0(k, r) =
[
−k21 + W2(r)

(
w + w∗

2
− wk

)]
f0(k, r) ≡ U(k, r)f0(k, r). (56)

As we will see below, the matrix U∞(k) = limr→∞ U(k, r) determines the transformed
Jost and scattering matrices. Using (54), (55) and the fact that W2wk vanishes at large
distances, one obtains a simple expression for this matrix,

U∞(k) =
(

−k2 ∓2χ2

±2χ2 −k2

)
. (57)

From the dominant term of (5) and (6), it follows that the function

f2(k, r) = Lf0(k, r)U−1
∞ (k) (58)

is the transformed Jost solution.
As in the previous part, the case l1 = l2 requires additional attention since the product

W2(w + w∗) gives at large distances the uncertainty 0 · ∞. Again we use the Wronskian
representation (41) of the two-fold superpotential W2 and the asymmetrical form of
transformation (36) thus obtaining

Lf0(k, r) →
r→∞[(−k2 + 2iχ2)1 + 4iχ2u∗W[u, u∗]−1uT ′

]f0(k, r). (59)

Using (A.1) and (A.6) in this expression leads to the same matrix U∞(k) as in (57).
Let us now find how the SUSY transformation modifies the behaviour of the potential at
the origin. From (39), one gets

det u(r → 0) → a1b2r
ν1−ν2+1 − a2b1r

ν2−ν1+1, (60)

which suggests that the discussion will depend on the relative values of ν1 and ν2.
For ν2 = ν1, excluding the case a1b2 = a2b1 (which requires higher order expansions),

one can expand the superpotential w(r) in a Laurent series near r = 0,

w(r → 0) = 1

(a1b2 − a2b1)r

×
(

a1b2(ν1 + 1) + a2b1ν1 −a1b1(2ν1 + 1)

a2b2(2ν2 + 1) −a2b1(ν2 + 1) − a1b2ν2

)
+ o(1), (61)

which implies with (40) that the lowest order term in W2 is linear in r. Consequently, (31)
implies that the singularity indices are not modified by the two-fold SUSY transformation.
Note however that (30) implies that the intermediate potential V1 displays in general off-
diagonal singular terms at the origin.

For ν2 > ν1, one gets instead of (61)

w(r → 0) = 1

r

(
ν1 + 1 0

0 −ν2

)
+ o(1). (62)
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To find the behaviour of W2 at the origin, a higher-order expansion would thus be necessary.
It is simpler in this case to study the two first-order transformations separately. From
(30) and (62), we conclude that the intermediate potential V1 has the following singularity
indices ν → ν̃ = diag(ν1 +1, ν2 −1). For ν2 < ν1, one gets ν → ν̃ = diag(ν1 −1, ν2 +1)

by symmetry.
Let us now analyse the behaviour of the transformation function ũ∗ = L1u

∗ which
determines operator L2. Using (21) and (62) (or (61) when ν1 = ν2) one can find that a
regular/singular vector solution transforms into a regular/singular vector solution of the
new equation. Such transformations are called conservative SUSY transformations [26].
As a result, the behaviour of ũ∗ near the origin is given by the conjugate of (39) with
different values of constants a∗

1,2 and b∗
1,2, i.e. a∗

1,2 → ã∗
1,2 and b∗

1,2 → b̃∗
1,2, and shifted

singularity indices ν̃ = diag(ν1 + 1, ν2 − 1) (to fix ideas, we consider the case ν2 > ν1):

ũ∗(r → 0) =
(

ã∗
1rν1+2 b̃∗

1r
−ν1−1

ã∗
2r

ν2 b̃∗
2r

−ν2+1

)
[1 + o(r)]. (63)

We have to split the discussion into two subcases, once again. For ν̃2 = ν̃1, i.e.
ν2 = ν1 + 2, an equation similar to (61) implies that w̃∗ behaves like r−1 multiplied
by a non-diagonal matrix close to the origin. Consequently, the final potential V2 will
be unphysical in general, with non-diagonal singular terms at the origin; therefore, we
will not consider this case any further. For ν̃2 > ν̃1, i.e. ν2 > ν1 + 2, the same reasoning
as above implies that the transformed potential V2 has the following singularity indices:
ν̃ → ν̄ = diag(ν̃1 + 1, ν̃2 − 1) = diag(ν1 + 2, ν2 − 2). Finally, for ν̃2 < ν̃1, which is
the case for ν2 = ν1 + 1, the second transformation restores the initial singularity indices
ν̃ → ν̄ = diag(ν̃1 − 1, ν̃2 + 1) = diag(ν1, ν2).

The modification rules for the singularity indices of the potential may thus be
summarized as follows in the physical cases:

(ν1, ν1)
L−→ (ν1, ν1), (64)

(ν1, ν1 + 1)
L−→ (ν1, ν1 + 1), (65)

(ν1, ν1 + m)
L−→ (ν1 + 2, ν1 + m − 2), m > 2. (66)

From here it is seen that in all cases Tr ν = Tr ν̄.
We are now ready to construct the regular solution of the transformed Schrödinger

equation. For ν2 �= ν1 superpotentials w and w̃∗ have the structure given by (61) or (62)
depending on the singularity indices. Therefore, the first-order transformations L1 and
L2 are conservative. Thus, the result of the two-fold SUSY transformation applied to
ϕ0(k, r) in the most general form can be written as follows:

Lϕ0(k, r) = ϕ2(k, r)U0(k), (67)

where U0 is a constant matrix with respect to r. The matrix U0(k) is invertible ∀k �= k1,2,
which can be seen from (25). In the case ν2 = ν1, the conservativeness of the two-fold
SUSY transformation can be established by considering (56) where ψ0 is replaced by
a regular solution. Note that ϕ0,2(k, r) = ϕ0,2(−k, r); therefore, matrix U0 is an even
matrix function of wave number k, U0(k) = U0(−k). The precise value of U0 is not
important for the following.

Applying operator L to the relation (7) between the Jost solutions and the regular
solution, one obtains with (58) and (67)

ϕ2(k, r)U0(k) = i

2k
[f2(−k, r)U∞(−k)F0(k) − f2(k, r)U∞(k)F0(−k)]. (68)
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The transformed Jost matrix thus reads

F2(k) = U∞(−k)F0(k)U−1
0 (k). (69)

The transformation of the scattering matrix then follows from its definition (16),

S2(k) = eil̄ π
2 U∞(k)e−il π

2 S0(k)e−il π
2 U−1

∞ (k)eil̄ π
2 , (70)

and is equivalent to (43) and (44). Note that the transformed S-matrix does not depend
on U0. To prove that the matrix O is real and orthogonal, one has to remember that l1, l2,
l̄1, l̄2 all have the same parity, as implied by (3) and (42). If written like in definition (18),
the matrix O corresponds to a rotation angle

∓ (−1)m arctan
2χ2

k2
= π

2
± (−1)m arctan

k2

2χ2
. (71)

D. Diagonalizing S2 in the same way as S0 in (17),

RT
2 (k)S2(k)R2(k) = diag(e2iδ2;1(k), e2iδ2;2(k)), (72)

and taking into account that matrices R0, O and R2 = OR0 all belong to SO(2), one sees
that S0 and S2 have the same eigenvalues. The mixing angle of S2 is given by the sum of
ε0 and (71). Inverting the order of these eigenvalues (see discussion following (18)), one
gets (45) and (47), i.e. a modification of the mixing parameter vanishing at zero energy,
ε2(0) − ε0(0) = 0. �

3.3. Iteration

Let us finally note that the transformed potential V2 can be used as a starting point for a next
eigenphase preserving transformation. This means that the two-fold SUSY transformation
considered above can be iterated as long as desirable. A chain of n such transformations over
the initial potential V0 will lead to the following mixing parameter:

ε2n(k) = ε0(k) ± (−1)m
n∑

j=0

arctan
k2

2χ2
j

(73)

leaving the eigenphase shifts unchanged.

4. Example

Let us consider a simple example where the eigenphase preserving SUSY transformation is
applied to an s–d diagonal potential with the following scattering matrix:

S0(k) = diag

(
1,

(k + iκ1)(k + iκ2)

(k − iκ1)(k − iκ2)

)
. (74)

The first channel corresponds to the d wave and the second channel corresponds to the s wave.
The corresponding potential reads

V0(r) = diag

(
6

r2
,−2(ln W[v1, v2](r))′′

)
. (75)

The d-wave potential is purely centrifugal, while the s-wave potential is obtained from the
zero potential by a second-order one-channel SUSY transformation with the factorization
solutions v1(r) = sinh(κ1r) and v2(r) = sinh(κ2r). This s-wave potential has no bound state

11
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Figure 1. Entries of the exactly solvable potential matrix V2 obtained from the uncoupled potential
(75) with the parameters κ1 = 0.232, κ2 = 0.944 by application of the eigenphase preserving
transformation with χ = 1.22.

but a singular repulsive core at the origin [17]. The potential V0 is thus characterized by the
singularity and centrifugal indices:

ν = diag(2, 2), l = diag(2, 0). (76)

The Jost solution corresponding to the potential V0 reads

f0(k, r) = diag(f0d(k, r), f0s(k, r)), (77)

where

f0d(k, r) = eikr

(
1 +

3i

kr
− 3

(kr)2

)
, (78)

f0s(k, r) =
(

ṽ′
2(r)

ṽ2(r)
− ∂r

) (
v′

1(r)

v1(r)
− ∂r

)
eikrN1N2, (79)

with ṽ2 = [(ln v1)
′ − ∂r ]v2 and the normalization constants Nj = (ik − κj )

−1. The regular
solution ϕ0 is expressed from (7) with the Jost matrix

F0(k) = diag (1,−N1N2) . (80)

Using these expressions for the Jost and regular solutions, one may construct with (48)
a transformation solution u with asymptotics (38) and (39), according to lemma 1. The
eigenphase preserving transformation described in theorem 1 leads to a singular potential V2

without bound state and with

ν̄ = diag(2, 2), l̄ = diag(0, 2). (81)

The eigenphase shifts of the transformed S-matrix coincide with the initial eigenphase shifts,

δs(k) = − arctan
k

κ1
− arctan

k

κ2
, (82)

δd(k) = 0. (83)

The mixing angle is given by (47) with ε0 = 0. In this case, different signs in (47) correspond
to different signs in the coupling interaction V2sd � −V2sd .

The transformed potential V2 with the following parameters:

κ1 = 0.232, κ2 = 0.944, χ = 1.22, (84)

is shown in figure 1 (for definiteness we have chosen the ‘+’ sign in (47)). The main reason
to consider this example is that it illustrates the same scattering matrix as the one obtained by
Newton and Fulton in [6]. The Newton–Fulton potential differs from the potential constructed
here because it has one bound state. This difference can in principle be eliminated by the
well-known technique of the coupled-channel phase-equivalent bound state addition [25].

12
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5. Conclusion

In this paper, we have introduced an ‘eigenphase preserving’ two-fold SUSY transformation
for the two-channel Schrödinger equation, i.e. a transformation that alters the mixing parameter
between channels without modifying the eigenphase shifts. Chains of such transformations
lead to coupling between channels in the scattering matrix which correspond to nontrivial
k-dependences of the mixing angle (73). With a reasonably small number of parameters,
such mixing angles are probably able to fit experimental data, in a similar way to the usual
phase shift fitting used in one-channel SUSY inversion [18, 24]. Combining both techniques,
we obtain a complete method of coupled-channel scattering data inversion based on SUSY
transformations. As a first application of this method, we plan to invert the two-channel
neutron–proton scattering data, hence improving the result of [6].

We also plan to study the following questions, raised by the present work. How do bound
states transform under this eigenphase preserving transformation? How do we construct
a similar transformation for an arbitrary number of coupled channels? Do other forms
of eigenphase preserving transformations exist? How will the presence of the Coulomb
interaction modify the properties of the eigenphase preserving SUSY transformation?
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Appendix

Let us calculate asymptotics (55) using the Wronskian representation (41). This allows us
to avoid manipulations with singular quantities which appear in (54) when l1 = l2. It is
convenient to rewrite the asymptotic behaviour of the transformation solution in the form

u(r → ∞)→
(

2Q∓ − i

ξ1
�Q∓σz

)
e−iξ1σz , Q∓ = (1 ∓ σy)/2, ξ1 = k1r, (A.1)

where � = diag(�1,�2), σx , σy and σz are the Pauli matrices, and the projection matrices
Q∓ satisfy

QT
± = Q∓, Q±Q∓ = 0, Q2

± = Q±, (A.2)

Q±σz = σzQ∓, Q±σx = σxQ∓. (A.3)

Here and in what follows we will only retain terms of order r−1 or lower. Let us first calculate
the Wronskian asymptotics at large distances. Definition (26) leads to

W(r → ∞) → 4iχe−iξ1σz (σz ± σx)

[
1 − (1 − i)

4χr
(�1 + �2)σzQ∓

]
eiξ∗

1 σz , (A.4)

which can be inverted (up to r−1) to give

W−1(r → ∞) → 1

8iχ
e−iξ∗

1 σz

[
1 +

(1 − i)

4χr
(�1 + �2)σzQ∓

]
(σz ± σx)e

iξ1σz (A.5)
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= 1

8iχ
e−iξ∗

1 σz

[
σz ± σx +

1

2χr
(�1 + �2)Q±

]
eiξ1σz . (A.6)

We can now calculate the two-fold superpotential up to r−1

W2 = 4iχ2u∗W−1uT (A.7)

→ χ

(
i

ξ ∗
1

�Q±σz(σz ± σx)Q± +
1

χr
(�1 + �2)Q± − i

ξ1
Q±(σz ± σx)σzQ±�

)
, (A.8)

where (A.2) and (A.3) have been used. To further simplify this expression, we also use the
decomposition � = 1(�1 + �2)/2 + σz(�1 − �2), which leads finally to

W2(r → ∞) → 1

2r
(�2 − �1)σz. (A.9)

This expression is valid for any l1 and l2; it is thus also valid for the case of coinciding partial
waves.
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